

CETOACIDOSE DIABETICA

Critérios Diagnósticos os 3 devem estar presentes:

- Glicemia capilar acima de 200 mg/dL **OU** diagnóstico prévio de diabetes
- pH menor que 7,3 **OU** bicarbonato menor que 15 mmol/L
- Cetonemia acima de 3 mmol/L **OU** corpos cetônicos urinários com ++ ou mais

Podemos calcular o ânion gap (AG) com os eletrólitos da gasometria, apesar da diferença entre a aferição da gasometria e do laboratório central. Então o segredo é - pode fazer, mas use sempre o mesmo método no manejo.

Cuidado com o **falso negativo da cetonúria** - o beta-hidroxibutirato predomina entre os cetoácidos, ele não esta presente na urina. Além disso, os corpos cetônicos podem demorar até 4 horas para ficar positivo. **Assim, o método diagnóstico mais confiável, é a cetonemia**

Cuidado com a **cetoacidose diabética euglicêmica** - mais frequente no paciente em uso de **iSGLT-2**, **grávidez e jejum prolongado**. Por isso o novo critério do guideline britânico sobre o diagnóstico prévio de diabetes.

Tratamento Os 3 pilares - Hidratação, potássio e insulina ("nessa ordem")

Os pacientes com cetoacidose diabética tem déficit corporal de potássio, assim, **SEMPRE devemos checar o potássio antes de iniciar a insulina**, visto seu potencial de hipocalemia por shift intracelular.

Sugestão conforme protocolos validados:

- Potássio < 3,3 mEq/L Repor 20 mL de KCl 19,1% em cada litro de solução salina e iniciar
- insulina apenas após normalização • Potássio 3,3 - 5,0 mEq/L - Repor 10 mL de KCL 19,1% e iniciar insulinoterapia
- Potássio > 5,0 mEq/L Iniciar insulinoterapia

Hidratação inicial com salina 0,9% - após checar o sódio para avaliar a solução de manuteção:

- Se Sódio maior que 135 Hidratação com Salina 0,45%
- Se Sódio menor que 135 Manter hidratação com Salina 0,9%

Para a hidratação, sempre lembrar de CORRIGIR o sódio. Lembrar que o sódio pode estar baixo devido à glicose, que é uma mólecula osmoticamente ativa. Assim, o cálculo de correção do sódio pela glicose será:

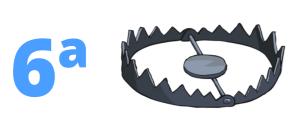
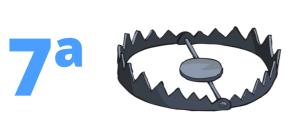

Para cada 100 acima de 100 de glicose, adicionar 1,6 no sódio OU

Table 9 Association between serum glucose concentration, measured serum sodium and corrected serum sodium concentration. Calculated using equation from Hillier TA, Abbott RD & Barrett EJ. Hyponatremia: evaluating the correction factor for hyperglycemia. *American Journal of Medicine* 1999 **106** 399–403. (31)

Measured (Na ⁺) (mmol/l)	Measured (glucose) (mg/dl) True (Na+) (mmol/l)							
	135	135	137	140	142	145	147	149
130	130	132	135	137	140	142	144	147
125	125	127	130	132	135	137	139	142
120	120	122	125	127	130	132	134	137
115	115	117	120	122	125	127	129	132
110	110	112	115	117	120	122	124	127
105	105	107	110	112	115	117	119	122
100	100	102	105	107	110	112	114	117
95	95	97	100	102	105	107	109	112
90	90	92	95	97	100	102	104	107
85	85	87	90	92	95	97	99	102
80	80	82	85	87	90	92	94	97
75	75	77	80	82	85	87	89	92
70	70	72	75	77	80	82	84	87


Resolução Não tirar a insulina em bomba antes da hora!

- Glicemia capilar menor que 250 mg/dL
- pH maior que 7,3 e Bicarbonato maior que 18 mEq/dL cuidado com os pacientes com outras acidose metabólicas
- AG menor que 12 Preferir a cetonemia menor que 0.6 mmol/L como critério

Apenas suspender a bomba de insulina se o paciente se alimentar e após 2 horas da aplicação da insulina subcutânea. Suspensão precoce da insulina em bomba está associada a recorrência da cetoacidose acidose

Via Aérea na CAD uma via aérea fisiologicamente difícil

A via aérea fisiologicamente difícil no paciente com cetoacidose é decorrente da acidose grave, devendo-se fazer o máximo para não ocorrer uma piora dela durante a intubação orotraqueal. Usar VNI nestes pacientes pode ajudar no cálculo do volume-minuto na hora da intubação, e assim ajuda a evitar um acidose respiratória secundária aos parâmetros ventilatórios na VM

